71 research outputs found

    Constraints on the Spin-Pole Orientation, Jet Morphology and Rotation of Interstellar Comet 2I/Borisov with Deep HST Imaging

    Get PDF
    We present high resolution, deep imaging of interstellar comet 2I/Borisov taken with the Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3) on 2019 December 8 UTC and 2020 January 27 UTC (HST GO 16040, PI Bolin) before and after its perihelion passage in combination with HST/WFC3 images taken on 2019 October 12 UTC and 2019 November 16 UTC (HST GO/DD 16009, PI Jewitt) before its outburst and fragmentation of March 2020, thus observing the comet in a relatively undisrupted state. We locate 1-2\arcsec~long (2,000 - 3,000 km projected length) jet-like structures near the optocenter of 2I that appear to change position angles from epoch to epoch. With the assumption that the jet is located near the rotational pole supported by its stationary appearance on \sim10-100 h time frames in HST images, we determine that 2I's pole points near α\alpha = 322±\pm10^\circ, δ\delta = 37±\pm10^\circ (λ\lambda = 341^\circ, β\beta = 48^\circ) and may be in a simple rotation state. Additionally, we find evidence for possible periodicity in the HST time-series lightcurve on the time scale of \sim5.3 h with a small amplitude of \sim0.05 mag implying a lower limit on its b/ab/a ratio of \sim1.5 unlike the large \sim2 mag lightcurve observed for 1I/`Oumuamua. However, these small lightcurve variations may not be the result of the rotation of 2I's nucleus due to its dust-dominated light-scattering cross-section. Therefore, uniquely constraining the pre-Solar System encounter, pre-outburst rotation state of 2I may not be possible even with the resolution and sensitivity provided by HST observations.Comment: 14 pages, 6 figures and 3 tables, accepted for publication in MNRAS on 23 July 202

    The Apple of Discord

    Get PDF
    Apple of Discord is an IMGD MQP in which a team of five students conceived, developed, tested, and re-defined a two-point-five dimensional, four person online game in the Unity3D engine. Our conceptual focus was to develop a polished game about the thirteen Greek Olympians that stayed true to religion. We hoped to deliver an end product akin in entertainment value to those of professionally developed products. Every art asset in the game was first hand-sculpted then turned into 2D sprites by our artists. The game has fully functional LAN-based online multiplayer that supports up to four players. Apple of Discord blends familiar mechanics from games such as the Civilization series, League of Legends , and Final Fantasy Tactics to deliver a unique and easy experience

    Debiased orbit and absolute-magnitude distributions for near-Earth objects

    Get PDF
    Abstract The debiased absolute-magnitude and orbit distributions as well as source regions for near-Earth objects (NEOs) provide a fundamental frame of reference for studies of individual NEOs and more complex population-level questions. We present a new four-dimensional model of the NEO population that describes debiased steady-state distributions of semimajor axis, eccentricity, inclination, and absolute magnitude H in the range 17 < H < 25. The modeling approach improves upon the methodology originally developed by Bottke et al. (2000, Science 288, 2190–2194) in that it is, for example, based on more realistic orbit distributions and uses source-specific absolute-magnitude distributions that allow for a power-law slope that varies with H. We divide the main asteroid belt into six different entrance routes or regions (ER) to the NEO region: the ν6, 3:1J, 5:2J and 2:1J resonance complexes as well as Hungarias and Phocaeas. In addition we include the Jupiter-family comets as the primary cometary source of NEOs. We calibrate the model against NEO detections by Catalina Sky Surveys’ stations 703 and G96 during 2005–2012, and utilize the complementary nature of these two systems to quantify the systematic uncertainties associated to the resulting model. We find that the (fitted) H distributions have significant differences, although most of them show a minimum power-law slope at H ∼ 20. As a consequence of the differences between the ER-specific H distributions we find significant variations in, for example, the NEO orbit distribution, average lifetime, and the relative contribution of different ERs as a function of H. The most important ERs are the ν6 and 3:1J resonance complexes with JFCs contributing a few percent of NEOs on average. A significant contribution from the Hungaria group leads to notable changes compared to the predictions by Bottke et al. in, for example, the orbit distribution and average lifetime of NEOs. We predict that there are 962 − 56 + 52 ( 802 − 42 + 48 × 10 3 ) NEOs with H < 17.75 (H < 25) and these numbers are in agreement with the most recent estimates found in the literature (the uncertainty estimates only account for the random component). Based on our model we find that relative shares between different NEO groups (Amor, Apollo, Aten, Atira, Vatira) are (39.4,54.4,3.5,1.2,0.3)%, respectively, for the considered H range and that these ratios have a negligible dependence on H. Finally, we find an agreement between our estimate for the rate of Earth impacts by NEOs and recent estimates in the literature, but there remains a potentially significant discrepancy in the frequency of Tunguska-sized and Chelyabinsk-sized impacts.Peer reviewe

    Earth’s Minimoons : Opportunities for Science and Technology

    Get PDF
    Twelve years ago the Catalina Sky Survey discovered Earth's first known natural geocentric object other than the Moon, a few-meter diameter asteroid designated 2006 RH120. Despite significant improvements in ground-based telescope and detector technology in the past decade the asteroid surveys have not discovered another temporarily-captured orbiter (TCO; colloquially known as minimoons) but the all-sky fireball system operated in the Czech Republic as part of the European Fireball Network detected a bright natural meteor that was almost certainly in a geocentric orbit before it struck Earth's atmosphere. Within a few years the Large Synoptic Survey Telescope (LSST) will either begin to regularly detect TCOs or force a re-analysis of the creation and dynamical evolution of small asteroids in the inner solar system. The first studies of the provenance, properties, and dynamics of Earth's minimoons suggested that there should be a steady state population with about one 1- to 2-m diameter captured objects at any time, with the number of captured meteoroids increasing exponentially for smaller sizes. That model was then improved and extended to include the population of temporarily-captured flybys (TCFs), objects that fail to make an entire revolution around Earth while energetically bound to the Earth-Moon system. Several different techniques for discovering TCOs have been considered but their small diameters, proximity, and rapid motion make them challenging targets for existing ground-based optical, meteor, and radar surveys. However, the LSST's tremendous light gathering power and short exposure times could allow it to detect and discover many minimoons. We expect that if the TCO population is confirmed, and new objects are frequently discovered, they can provide new opportunities for (1) studying the dynamics of the Earth-Moon system, (2) testing models of the production and dynamical evolution of small asteroids from the asteroid belt, (3) rapid and frequent low delta-v missions to multiple minimoons, and (4) evaluating in-situ resource utilization techniques on asteroidal material. Here we review the past decade of minimoon studies in preparation for capitalizing on the scientific and commercial opportunities of TCOs in the first decade of LSST operations.Peer reviewe

    Astreaks: Astrometry of NEOs with trailed background stars

    Full text link
    The detection and accurate astrometry of fast-moving near-Earth objects (NEOs) has been a challenge for the follow-up community. Their fast apparent motion results in streaks in sidereal images, thus affecting the telescope's limiting magnitude and astrometric accuracy. A widely adopted technique to mitigate trailing losses is non-sidereal tracking, which transfers the streaking to background reference stars. However, no existing publicly available astrometry software is configured to detect such elongated stars. We present Astreaks, a streaking source detection algorithm, to obtain accurate astrometry of NEOs in non-sidereal data. We validate the astrometric accuracy of Astreaks on 371 non-sidereally tracked images for 115 NEOs with two instrument set-ups of the GROWTH-India Telescope. The observed NEOs had V-band magnitude in the range [15, 22] with proper motion up to 140^{\prime\prime}/min, thus resulting in stellar streaks as high as 6.5^\prime (582 pixels) in our data. Our method obtained astrometric solutions for all images with 100% success rate. The standard deviation in Observed-minus-Computed (O-C) residuals is 0.52^{\prime\prime}, with O-C residuals <2^{\prime\prime}(<1^{\prime\prime}) for 98.4% (84.4%) of our measurements. These are appreciable, given the pixel scale of \sim0.3^{\prime\prime} and \sim0.7^{\prime\prime} of our two instrument set-ups. This demonstrates that our modular and fully-automated algorithm helps improve the telescope system's limiting magnitude without compromising astrometric accuracy by enabling non-sidereal tracking on the target. This will help the NEO follow-up community cope with the accelerated discovery rates and improved sensitivity of the next-generation NEO surveys. Astreaks has been made available to the community under an open-source license.Comment: 10 pages, 7 figure

    The splitting of double-component active asteroid P/2016 J1 (PANSTARRS)

    Get PDF
    We present deep imaging observations, orbital dynamics, and dust tail model analyses of the double-component asteroid P/2016 J1 (J1-A and J1-B). The observations were acquired at the Gran Telescopio Canarias (GTC) and the Canada-France-Hawaii Telescope (CFHT) from mid March to late July, 2016. A statistical analysis of backward-in-time integrations of the orbits of a large sample of clone objects of P/2016 J1-A and J1-B shows that the minimum separation between them occurred most likely \sim2300 days prior to the current perihelion passage, i.e., during the previous orbit near perihelion. This closest approach was probably linked to a fragmentation event of their parent body. Monte Carlo dust tail models show that those two components became active simultaneously \sim250 days before the current perihelion, with comparable maximum loss rates of \sim0.7 kg s1^{-1} and \sim0.5 kg s1^{-1}, and total ejected masses of 8×\times106^{6} kg and 6×\times106^{6} kg for fragments J1-A and J1-B, respectively. In consequence, the fragmentation event and the present dust activity are unrelated. The simultaneous activation times of the two components and the fact that the activity lasted 6 to 9 months or longer, strongly indicate ice sublimation as the most likely mechanism involved in the dust emission process.Comment: Accepted by ApJ Letters, Feb. 17, 201
    corecore